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• McGurk effect (McGurk & MacDonald, 1976)

• Phonemes and Visemes (Fisher, 1968)

• Human lipreading performance is poor

We can improve it…

How easy do you think lipreading is?
1. Introduction
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https://goo.gl/hyFBVQ
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1. Introduction

http://www.youtube.com/watch?v=fa5QGremQf8
https://goo.gl/hyFBVQ
https://goo.gl/hyFBVQ
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Among others:

-Improved hearing aids

-Speech recognition in noisy environments (e.g. cars)

-Silent dictation in public spaces

-Security

-Biometric identification

-Silent-movie processing
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Why is lipreading important?
1. Introduction
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https://goo.gl/RTXh9Q
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1. Introduction

http://www.youtube.com/watch?v=YTkqA189pzQ
https://goo.gl/RTXh9Q
https://goo.gl/RTXh9Q
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• Most existing work does not employ deep learning

• Heavy preprocessing

• Open problems:

• generalisation across speakers

• extraction of motion features
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Automated lipreading
1. Introduction
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1. Hierarchical, expressive, differentiable function

1. Adjust parameters to maximise probability of data with gradient 
descent
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End-to-end supervised learning using NNs
2. Background

input predictive
distribution

Layer 1

Layer 2

Layer L
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• Model: Deep stacks of local operations.

• Good for: relationships over space (2D):

• Also good for time (1D)

• Or in our case, space & time (3D): every layer can model either 
or both. Lets the optimisation decide what's best.
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Convolutional Neural Networks
2. Background

deeplearning.net

http://deeplearning.net
http://deeplearning.net
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• Model: carry information over time using a state

• Good for: sequences

• Often used to predict classes at each timestep

• But what if inputs/outputs are unequal length, or aren't aligned?
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Recurrent Neural Networks
2. Background
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• If inputs/outputs aren't aligned, CTC (Graves 2006) efficiently 
marginalises over all alignments

• To do this, let the RNN output blanks or duplicates:

• Sum over every way to output the same sequence:
p(am) = p(aam) + p(amm) + p(_am) + p(a_m) + p(am_)
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Recurrent Neural Networks
2. Background
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• Monosyllabic vs Compound words (Easton & Basala, 1982)

• Spatiotemporal features

• End-to-end, sentence-level

• GRID corpus 33000 sentences
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LipNet
3. LipNet
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GRID corpus
3. LipNet
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• Facial Landmarks

• Crop the mouth

• Affine transform the frames

• Smoothen using Kalman filter

• Temporal augmentation

Preprocessing
3. LipNet
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Model Architecture
3. LipNet
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• Hearing-Impaired People
3 students from the Oxford Students’ Disability Community

• Baseline-LSTM
Replicate previous state-of-the-art architecture by (Wand et al., 
2016)

• Baseline-2D
Spatial-only convolutions

• Baseline-NoLM
Language model disabled
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Baselines
3. LipNet
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Lipreading Performance

Unseen
Speakers

Overlapped
Speakers

CER WER CER WER

Hearing 
Impaired 47.7%

Baseline-
LSTM 38.4% 52.8% 15.2% 26.3%

Baseline-
2D 16.2% 26.7% 4.3% 11.6%

Baseline-
NoLM 6.7% 13.6% 2.0% 5.6%

LipNet 6.4% 11.4% 1.9% 4.8%

3. LipNet
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Learned Representations
4. Analysis
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Viseme Confusions
4. Analysis



Thank you!



Thank you NVIDIA!
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